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Abstract 

Structure refinement may be considered as a minimiz- 
ation of a function R(X) of a large number ofrefineable 
parameters. A new type of function incorporating 
phase probability distribution is proposed. The 
minimization of the function utilizing gradient 
methods requires the computation of gradient V R, as 
well as the product of the gradient and the matrix of 
second derivatives with some direction. The algorithm 
of Kim, Nesterov & Cherkassky [Dokl. Akad. Nauk 
SSSR (1984), 275, 1306-1309] adapted to macro- 
molecular structure refinement takes about four 
times longer for the computation of these values 
compared to the computation of the value of the 
minimized function. The matrix of second derivatives 
is used without any approximation. 

Introduction 

The refinement of a structure implies that there is a 
model with parameters to be changed until they most 
closely fit X-ray scattering data, stereochemical 
restraints, energy minimum conditions etc. The 
refinement proper should be distinguished from the 
elaboration of its instrumental part, that is computer 
programs. And if for the former the most important 
are the researcher's experience and intuition, the 
latter puts more emphasis on the 'computer' problems 
such as efficiency of the algorithms, user's con- 
venience etc. Different approaches to refinement of 
macromolecular structures have computational 
similarities, so that it becomes possible to solve most 
general problems of developing the corresponding 
programs. 
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The large number of refineable parameters is an 
essential feature of macromolecular structure refine- 
ment. This involves considerable computational 
difficulties, therefore routinely applicable algorithms 
need computation increasing linearly with the size of 
the refineable object. The Cooley-Tukey (1965) 
algorithm based on the fast Fourier transform and 
the fast differentiation algorithm developed by Kim, 
Nesterov & Cherkassky (1984) allow a general 
algorithm for model refinement whose computation 
per cycle increases almost linearly with the size of 
molecule. In § 2 we consider the algorithm construc- 
ted by Kim et al., in which the n components of the 
gradient of a function f ( x l , . . . ,  xn) require much the 
same computation as the single function. Note that 
an algorithm of this type for some particular criterion 
used in refinement of atomic models was earlier pro- 
posed by Agarwal (1978) and later improved by 
Lifshitz (Agarwal, 1981). In § 3 we show how to 
develop similar algorithms for every criterion and 
refineable parameter. It should be emphasized that 
these rapid algorithms compute the accurate product 
of a full second-derivative matrix and a direction 
without any approximation. Application of the 
routine based on these algorithms will be considered 
elsewhere. 

1. Problem of the atomic model refinement 

1.1. Atomic models 

In this paper we consider only the models where 
the distribution of electron density can be a sum of 
the contributions of individual atoms 

p ( r ) =  ~ pj(r, cb). (1) 

© 1985 International Union of Crystallography 
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Here qj = {th,, } are refineable parameters determining 
the contribution of an atom to the electron density 
and pj(r, q~) are the known functions describing this 
contribution. For instance, it is common to determine 
the contribution of a single atom by four parameters: 
isotropic thermal motion parameter Bj and atomic 
coordinates r~ = (xj, yj, zj); here qj = (Bj, xj, yj, zj). The 
function pj(r,q) is usually described by a sum of 
Gaussians. 

We write q = {qi} for the parameters of all the atoms 
contributing to p(r) = p(r, q) and call them the atomic 
parameters. 

Sometimes, to impose rigorous stereochemical 
restraints on the atomic parameters q, one describes 
a model by generalized parameters X = (X~, . . . ,  Xn). 
These are, for example, dihedral angles 0j (Diamond, 
1971) or parameters of some 'rigid' molecular frag- 
ments (Sussman, Holbrook, Church & Kim, 1977; 
Sussman, 1981). In this paper the generalized param- 
eters are only used to restore all the atomic param- 
eters so that we can apply (1) to calculate the electron 
density in the cell. The transform of the generalized 
parameters into the atomic ones is assumed to be 
done by functions 

qj =q j (x) .  (2) 

1.2. Refinement criteria 

Qualitative criteria may be expressed by different 
characteristics of a refined model such as generalized 
parameters X, atomic parameters q, electron density 
p(r) and structure factors 

. I  f(s) =fs exp (i~os) = f ~  + ~s 

= [ p(r)exp[2~ri(s,r)]dV,. (3) 

V 

A few examples will illustrate most usable criteria of 
different types. 

Reciprocal-space refinement ( Agarwal, 1978). 

Rx[f(x)] = Y~ Ws[fs(x)--f°bs]2~min, (4) 
s 

where fobs are the experimental structure-factor 
modules and ws are the preset weights. 

Real-space refinement (Diamond, 1971). 

Rp[p(x)]=Y~[p(r,x)-p°bS(r)]2~min, (5) 
r 

where p°bS(r) is an electron density distribution that 
is treated as 'observed'. 

Energy refinement (Warme & Scheraga, 1974). 

g E [ q ( x ) ] ~ m i n ,  (6) 

where RE can be interpreted either as the conforma- 
tion energy or as a penalty function for the violated 
stereochemical standards. Generally, one uses sum- 

marized criteria, such as, for example, 

aRx[f(x)]+ flRE[q(x)]~min (7) 

(Jack & Levitt, 1978; Hendrickson & Konnert, 1980). 
Usually, a criterion requires an amount of compu- 

tation depending upon which characteristics of the 
model it is expressed by. The most difficult is to 
calculate a criterion expressed by structure factors 
f(s), because these need themselves more computa- 
tion than the values of the electron density distribu- 
tion p(r). It is this criterion that we shall consider in 
§ 3. To adapt the algorithms to other criteria, one 
only needs to exclude several steps. 

1.3. Inclusion of the phase information into the criterion 

The use of the information on structure-factor 
phases obtained in some way can enhance the 
efficiency of refinement. In the early stages of protein 
X-ray structure analysis the phase information is 
essentially based on additional experiments with 
heavy-atom derivatives. Inclusion of the information 
in the refinement means that additional experimental 
data are used. In the next stages the phase information 
may accumulate some supplementary knowledge 
about the structure (atomicity, electron density non- 
negativity, non-crystallographic symmetry etc.). 

Normally, we do not know a single value of the 
phase but rather are restricted to a phase probability 
distribution P~(~o, s) for the values of the phase ~s. 

This may be represented in the general form 

P~ (~o, s) -~ exp {As cos ~o + Bs sin ~0 

+ Cs cos 2~0 + Ds sin 2~o} (8) 

(Hendrickson & Lattman, 1970), here As, Bs, Cs and 
Ds are constants determining this distribution. 
Assuming the experimental estimate of the intensities 
Is = f2  gives a normally distributed error with a zero 
mean and dispersion o-~(s), we obtain a probability 
distribution for fs with the density 

Pf(f s) exp {--[fs 2 -  obs22 2 
~ -  (f~ ) ]/2o,~s~}. 

If nowf~ and ~os are supposed to be mutually indepen- 
dent, the joint probability distribution will be 

I-I PAfs, s)P~ (~,~, s) 
s 

~- exp { -  ~ [1/2o'~ (s)][f 2 -(J~s bs)2] 2 

+ [As cos ~Os + B~ sin ~o~ 

+ C~ cos 2~o~+ D~ sin 2~Os]}, (9) 

i.e. the most probable is the model where the following 
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value is minimal 

Rx[f(x)] 

= Z {[1/2¢r~(s)][f~2(X)- (f~bs)2]2 
s 

- [As  cos ~p,(X) + Bssin q~s(X) 

+CsCOS2q~s(X)+ Dssin2q~s(X)]}. (10) 

The use of this function in the course of refinement 
is advantageous in many respects. Firstly, we take 
into consideration the additional phase information. 
Secondly, we can change ~s(X) based on the reliability 
of this information. In the course of refinement we 
may use, in particular, structure factors with undeter- 
mined phases by setting A s = B s = C s = D s = 0 .  
Thirdly, using (10), we can take account of the multi- 
modality of the probability distributions for the phase 
~Ps, which is impossible with the criterion 

E 141s( ~0s - -  ~0s°bs) 2 (11) 
s 

(Rees & Lewis, 1983) where the phases are associated 
with a single chosen value of ¢ob~. AS will be seen 
from further discussion, the computation by (10) is 
not more complicated than with (4). 

the computation of all the values of f(x),  Of/Oe, Vf  
and V2fe will take time of the order of 4T(f ) ,  i.e. the 
'mean time' is almost equal to that needed for the 
calculation off (x) .  

A convenient form of the fast differentiation 
algorithm will be shown below. 

The main idea of the fast gradient computation for 
a function f(x)  may be formulated as follows. We 
calculatef(x) as a chain of transforms of the variables 

x ~  y~(x) ~ y2(y~) ~ . . ._~  yN (yN-~) ~ F(yN) --f(x)  
(13) 

so that the gradient is computed as a chain of consecu- 
tive computations of the gradient of a complex func- 
tion F{yN[yN-I-(''h{y2[y~(x)]}''')]}N 1 with respect to 
the variables y ,y - , . . . , x :  

VyNF-->VyN-IF-->...~ VyxF-> Vx F. (14) 

As will be shown later, every transform VykF--> Vy,-,F 
takes as much time as the transform yk-1 ._> yk, SO that 
the entire chain (14) may be computed in the same 
time as the chain (13). Let us detail this. 

Consider first a case where the function f(x)  is 
calculated as a chain of two superpositions: 

2. Fast differentiation algorithm 

2.1. Gradient computation 
In minimizing a complex function of a large num- 

ber of variables, the gradient seems much more 
difficult to compute than the function f(x)  itself. For 
instance, in the well known method of numerical 
differentiation 

Of/Oxj "" [f(x + hi) - f (x ) ] / h ,  

hj = ( 0 , . . . ,  0, hi, 0 , . . . ,  0), (12) 

the gradient requires 2n computations of the function. 
On thorough examination, one can find simpler ways 
of computing this (see, for example, Agarwal, 1978). 
But this approach based mainly on intuition and 'luck' 
is not the best. Thus, Agarwal's algorithm has been 
greatly improved by Lifshitz (Agarwal, 1981). 

KJm et al. (1984) have recently shown that for any 
f(x)  the gradient can be computed in much the same 
time as the function. In particular, two points here 
are noteworthy. Firstly, this algorithm deals only with 
the exact computation of V f, without any approxima- 
tion. Secondly, it gives detailed indications of how 
to obtain 'fast' routines for the computation of V f, 
making this process almost 'self-running'. 

The algorithm of Kim et al. computes the gradient 
in not more time than CT(f), where T(f) is the time 
for calculation off(x)  and C is a rather small constant 
(of order 2-4) independent of n. We do not specify 
the value of C, mention only that if this algorithm is 
applied to refinement of macromolecular structures 

x-~ y(x) -~ F ( y ) - f ( x ) ,  (15) 

such thatf(x)  = Fly(x)] where x =  ( x l , . . . ,  x,), y(x) = 
[yI(X),... ,ym(X)] and yl(x), .-- ,ym(X) are preset 
functions. Then 

Of/Oxj= ~ (OF/Oy,)(OydOxj) (16) 
i=1 

so that the transform VyF ~ VxF = Vxf may be given 
by 

Vxf = (Oy/Ox) TVyF. (17) 

H ere VyF = (0F/Oy~,. . . ,  OF/Oym) r is the gradient of 
F with respect to the variables y = (y~, . . . ,  Ym), Oy/Ox 
is the Jacobian matrix 

oy,< x  / 
(18) 

and T means matrix transposition. 
Analogously, in the case of a greater number of 

superpositions [see (13)], the transform Vy~F-> Vy~-IF 
in the chain (14) can be obtained by 

Vyk-iF=(Oyk/Oyk-~)rVykF, (19) 

where Vy~F = VykF(y N(yN-I[. .. yk+l(yk)...]}). 

Thus, the computation of an arbitrary function can 
be reduced to a sequence of elementary operations 
(addition, subtraction, multiplication, division) such 
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that 

r I = XI, 

r n ~ X n ,  

r,+l=f~(rl,...,r,), 
r.+2 = f 2 ( r l ,  • • • , r., r n + l ) ,  

(20) 

r n + N  = f N ( r l ,  . . . , r n + N - l ) ,  

which gives f ( x ) = r , + N .  Here r l , . . . ,  r,+N-1 are 
the results of intermediate computations and 
f j ( r l , . . . ,  r,,+j-1) are the corresponding elementary 
operations, so that every fj depends on not more than 
two arguments• The sequence (20) can be written as 
the chain (13), if we introduce 

y'(x) = [ y l ( x ) , . . . ,  y~+,(x)] 

-Ix, , . . . ,x , ,A(x, , . . . ,  x,)] 
° • .  

yk(yk-~) = [y~(yk-1) , . . . ,  y~+k(yk-~)]  

= i r a - l ,  k - ,  - ,  k - ,  k - ,  -- . . . , Y , ,+k-bJk tY~  , . . . ,  Y,,+k-l)]. 
(21) 

The Jacobian matrix corresponding to the transform 
Vy~F~ V & , F  in the chain (14) then assumes the form 

where 

0yk- 1 -- 
k 

OL k Ol k . . .  Ot n +  k -  

(22) 

ak. =Ofk ( r l ,  . . r ,+k_l) /Orj;  ] " ' 

k = l , • • • ,  N a n d j =  1 , . . • ,  n + k - l ,  so that there are 
only two non-zero elements in the last row of matrix 
(22). To compute the product of the matrix 
(0yk/0yk-1) r and the vector Vy~F, we thus need two 
multiplications and two additions, because all the 
VykF  components except two will pass unchanged to 
Vyk-tF. Hence, the computation of the entire chain 
of N transforms in (14) can be evaluated by 2 N  
multiplications, whereas, as can be seen from (20), 
the computation o f f (x )  requires N operations, only 
half as much as the gradient computation. 

2•2• C o m p u t a t i o n  o f  VZfe a n d  a der ivat ive  in direction 

Several methods of minimization of f (x)  require 
computation of V2fe, where V2f is the matrix of 
second derivatives and e is the vector. This problem 
appears to be much more complicated than the 

gradient computation. In a number of protein struc- 
ture refinements (Agarwal, 1981 : Dodson, 1981 : Hen- 
drickson & Konnert, 1980), the vector V2fe has been 
computed by approximating the matrix v z f  It should 
however be emphasized that 

V:fe = V e,(Of/Ox,  , (23) 
i 1 

i.e. the product vEf is just the gradient of an auxiliary 
function Y~ ei(Of/Oxi) ,  a derivative of f (x)  in the e 
direction. Therefore, as shown above, the vector V2fe 
requires as much computation as 

Of/Oe= ~ e,(Of/Ox,). 
i = 1  

Now we show that the function f (x)  has an equivalent 
computational cost. 

Note that 

e,(of[y(x)l/ox,)= ~ e, ~ (of/Oyj)(oyjlox,) 
i = 1  i = l  j = l  

) = ~, e , ( O y j O x , )  Of/Oyj, (24) 
j = l  i = 1  

i.e. the derivative of a complex funct ionf(x)  = F[y(x)] 
in the e direction can be computed as a derivative of 
the function F(y) in a new e' direction given by 

e' = (Oy/Ox)e, (25) 

where Oy/0x is the Jacobian matrix (18)• This implies 
that if the algorithm for the computation of f (x)  is 
represented by the chain (13), the derivative in the e 
direction can be obtained by differentiating a function 
F(y N) in a new e N direction resulting from the chain 
of transforms 

e I .-> e 2 ~.•. .-> e N, ( 2 6 )  

where 

e k = (Oyk/Oyk-~)ek-~• (27) 

Thus, if the computational algorithm is expanded 
in elementary operations by (20), the matrices 
Oyk/Oy k-1 will take the form (22) with two non-zero 
elements in the last row. Hence, in this application 
the transform (27) will require two additions and two 
multiplications so that the computational cost of the 
chain (26) is proportional to that o f f (x )  with a small 
proportionality constant. 

Note also that sometimes it is more convenient that 
the vector V2fe should be defined as the derivative 
of a vector function Vf(x) in the e direction: 

v2fe= e,(OVf/Ox,). (28) 
i = 1  
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3. Application of the differentiation algorithm to 
refinement of macromolecular structures 

3.1. Fast computation of  the function R(X ) 

We shall here apply the results obtained in § 2 to 
the minimization of criteria of the type 

g ( f )  Y~ R I = a(f~ ,fg ; s), (29) 
~aES 

where S is a given reflexion set; a(u, v; s) are preset 
functions and R f~ ,f~ are the real and imaginaryparts 
of structure factors (3). To be more precise, we shall 
show how to compute VR and V2R~ in much the 
same time as R(f). 

The Hermitian symmetry of structure factors of the 
real function p(r) is 

f(-s)  = If(s)]* (30) 

(* is a complex conjugation), which implies that the 
criteria a(u, v; s) should also be symmetric so that 

a( u, - v  ; s) = a( u, v;s). (31) 

This involves the corresponding symmetry of the 
functions 

al(u, v;s)=Oa(u, v;s)/Ou 
(32) 

a2(u, v; s)=Oa(u, v; s)/Ov and 

such that 

al(u, - v ;  -s)  = al(u, v; s), 
(33) 

az(u, - v ;  - s )  = -az(u, v; s).  

We also assume that the set of reflexions S summar- 
ized in (29) is symmetric about the origin. 

As has already been shown, the construction of the 
fast algorithm for the gradient computation may be 
reduced to the fast computation of R[f(x)]. The 
necessary structure factors may be calculated in two 
ways. The first is to calculate f(s) by formulae derived 
from (3) with analytical integration (see, for example, 
Hendrickson & Konnert, 1980). The second requires 
that only the values of the function p(r) at points of 
the U grid of the unit cell should be calculated 
analytically. The integral computation is then 
replaced by the computation of an appropriate 
integral sum: 

f(s)~--(V/nxnynz) Y. p(r)exp[2~ri(s,r)], (34) 
r ~  U 

where the fast Fourier transform algorithm can be 
used (Ten Eyck, 1973, 1977). Here n,~ ny and nz are 
the numbers of U-grid divisions. Since the last 
equality is approximated, formally speaking, different 
criteria can be obtained from (29) according to how 
we calculate f(s). But with appropriately chosen grid 
spacing and atomic radii, the difference between the 
values calculated by (3) and (34) can be remarkably 
reduced compared with the measurement error of 
fobs. So, in practice we have no grounds to prefer the 

first way of computing f(s) to the second. At the same 
time, the second method of structure factor calcula- 
tion leads, for large molecules, to considerable 
savings in computational time (Ten Eyck, 1977). 

3.2. Gradient computation 

In this section we shall show how the general fast 
differentiation algorithm described in § 2.1 may be 
realized to calculate a gradient VxR(x ). As follows 
from 3.1, the function R is computed as a chain of 
superpositions: 

X 

generalized parameters; 

q=q(x) (35) 

parameters of the atoms contributing to the electron 
density of the unit; 

p ,= p(r, q) = Y~ pj(r, qj) (36) 
J 

electron densities at grid points r s U; 

f ~ + / f ~ = C  E prexp[2~ri(s,r)] (37) 
r e  U 

structure factors, s ~ S; 

R ~ R z = a(f~ ,f~, s). (38) 
s E S  

According to the general scheme, we begin with 
R I R I the computation of a gradient (F , F ) = {Fs, Fs}~ of 

R with respect to fff, f~: 
FR=OR/o fR= R I al(f~ ,fg, s), 

(39) 
Fl  = OR/Ofl R = a2(f~,f~; s), 

where al and a2 are defined by (32). 
Then, applying (37), we may compute the com- 

ponents Pr of the gradient of R with respect to p~: 

Pr-" OR/Opr = E (F~[OfsR(P)/OPr] + Fl[OfZs(P)/OPr]} 
s E S  

= C  Y~ [F~ cos 21r(s,r)+ F~ sin2~r(s, r)] 
s E S  

= C  ~ (F~+iF~)exp[-27ri(s ,r)] ,  (40) 
~ E S  

where S symmetry and equations F_~ = Fff, F~_, = 
- F ~  following from (33) have been used to derive 
the last equation. As in (37), the algorithm of the fast 
Fourier transform can be applied to calculate P~. 

The transform into a gradient Q={Qj~} with 
respect to qj gives by (36) the following equality: 

Qj~=OR/Oqj~= E P,(OpJOqj~) 
r6  U 

= E Pr[Opj(r, qj)/0qj~]. (41) 
r e  U 

Note that in the last equality, as in (36), the summa- 
tion is only carried out over points re  U, where 
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pj(r, cb) ~ 0, i.e. the amount of computation is propor- 
tional to the number of atoms. 

Finally, we can obtain a gradient X = {Xk~} using 
the generalized parameters 

Xk~ =OR/OXk~ = E Qj~[3cb~(X)/OXkt3]. (42) 
j ,  ot 

We do not specify the last transform, because the 
dependences q(x) are not detailed. We mention only 
that, as is shown in § 2.1, the last transform requires 
computation proportional to that of the transform 
(35). It is also worthwhile noting that the crystallo- 
graphic symmetry allows more rapid transforms (37) 
and (40). 

If the criterion R assumes the form (4), the compu- 
tational procedure is identical to Agarwal's algorithm 
(Agarwal, 1978, 1981). In this connection we should 
make two essential remarks. Firstly, in contrast to 
Diamond (1971) and Agarwal (1978), we have no 
need to divide artificially the refineable atomic 
parameters into different groups. Secondly, the trans- 
forms (35)-(42) yield the accurate value of the 
gradient of R where f(s, q) are derived from (34). 
Some assumptions have been made to choose the 
function, but once R(X) is selected, we have no need 
for further assumptions to compute the gradient. It 
follows in particular that the U grid and the atomic 
radii are the same in (41) and (36), which contradicts 
Agarwal's considerations. 

2 3.3. Calculation of a product VxxRto. 

Let to = {tOk~} be the prescribed direction in space 
of the generalized parameters X = {Xk~ }. The series of 
transforms obtained 

{Xk~} -> {ibm} ~ {P~} -> {fff , fd} 

~ { F  if, Fd}~{P,}~IQj, ,}~{Xk~} (43) 

may be considered as the chain of superpositions (13) 
in the computation of a set of functions Xk~(X)= 
OR(x)/OXkl3. As the values 

~2k~ = E to,~[O2R(x)/aXk~ OX,8] 
1,8 

= ~, tOls[OXk~(X)/OXl~] (44) 
i ,~  

are the derivatives of the functions Xk~(X) in the to 
direction, then, according to § 2.2, we have to con- 
struct the chain of directions (26) in the new variables 
on the basis of (43). 

We start from the transform in the direction 1 = {lj~} 
for the variables q = {qj~}: 

l~, = E t°k~[O~,(X)/OXk~]. (45) 
k,/3 

Further, we construct the direction "r={r,} in the 
variables p = {p~}: 

7"r= E lja[aPr(q)/Oqj~] = E Opj(r, qj)/Olj, (46) 
J,~ j 

i.e. the function {~'r}r~U is a 'modified' electron 
density. 

The transform into the direction (gR, gl) = {gR, g~} 
in the variables (fR, f~) R = {f~ ,f~} is given by 

gR=~. r~[ofR(p)/3p,]=C ~ r, COS 27r(s, r), 
r T 

g~=~. ~-r[3f~(p)/3p,]=C ~ r, sin 27r(s, r), 
r r 

so that 

gff +ig~=C E ¢,exp[27ri(s,r)] (47) 
r e  U 

are the structure factors of the modified density {r~},. 
Now we should pass to the direction (G R, G ~) = 

{G R, G~} in the variables (FR, F' )={FR,  F~}: 

GR= E {gtR[oFR(fg, f ' ) / o f  R] 
t ~ S  

I R R f l  + gt[OFt (f , )/3f~]} 
_gRa, , ( fR , f~:s )  + , R , - gsal2(f~ ,f~ ; s), 

(48) Q'  g R , = {gt [OFt(fg, f ' ) / o f  R] 
t ~ S  

+ g't[~F[ fiR, f,)/0f~]} 
I R 1 .  = gR a12(fR, f~ ; S) + gs a:2(f~ ,f~,  s), 

where equations (39) are used and 

all(u, v; s) = O:a(u, v; s)/Ou:, 

al2(U , V; S)= 32a(u, v; s)/Ou Or, 

a22(u, v; s) = 32a(u, v; s)/av 2. 

Note that on account of the general theory of § 2.2, 
the transform 

fR, f~, gR, g~ ~ F R, F j, G a, G ~ 

requires as much computation as that of (fg, f l )  into 
R(fR, fl) even for an arbitrary function R, which is 
not necessarily of the form (38). 

Applying (40), we obtain the direction T--{ T~} in 
the variables P = {P~} expressed as 

T,=Y~ {GR[3p,(FR, F')/OF R] 
s 

+ Gd[OP,(F R, F' )lOFt]} 

=CY~(GR+iG~)exp[-27ri(s ,r)] .  (49) 
s 

To pass from the direction (T, 1) in the variables 
(P, q) to the direction L in the variables Q, we should 
take into consideration that in (41) the values Qj~ 
depend not only on the variables {P~} but also on the 
variables %, so that this transform may be given by 

Lj~ = Y. Tr[OQj~(P, q)/3Pr] 
¢ 

+ Y. lkl3[OQj~(P, q)/Oqk~] 
K~ 

= E { T,[apj(r, (b)/cgtb:] 
r 

+ P, ~, lj~[32py(r, qj)/Otb,, 0Cb~]}. (50) 
13 
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Note that, as follows from § 2, the values {OpJOqiot}ot 
and {~z lit3(O2pj/Ochot 0tbt3)}ot can be computed as fast 
as the values pj(r, q j). 

Similarly, passing from the direction (L, to) in the 
variables (Q, x) to the direction II  in the variables 
X, we have by (42) the following equation: 

$"2k43--" X { Ljot[Oq, iot(X)/ O)(kO] 
Lot 

+ Qjot E to,~[O2qjot(X)/OXkt3 OXj} • (51) 
i,y 

It should be emphasized that, in contrast to Agarwal 
(1981), Dodson (1981) and Hendrickson & Konnert 
(1980), who have made approximations for the matrix 
H =V2qR(Q), we obtain by (43)-(51) an absolutely 
accurate product V2×Rto without further assumptions 
for the elements of the matrix V2R. 

3.4. Rdsumd 

Thus, we have shown that for any method of 
describing an atomic model by generalized para- 
meters and for every minimized function R(X) an 
algorithm may be obtained that allows R(X) and the 
derivative in the direction aR(x)/ato as well as all 
the components of the vectors VxR and V2xRto to 
be computed in four times the time needed to calcu- 
late the value of R(X). Given the model and refine- 
ment criteria, we must only specify the transforms 

X-->q(x) and {fR, f~}->R. 

It should be noted that the criteria expressed by 
atomic parameters (criterion R.¢) can be estimated in 

a similar way, but the procedure in this case is greatly 
simplified: once the values of q have been determined, 
the criterion can be calculated without the transform 
q_~ p_~ (fR, f l ) .  

The authors are grateful to K. V. Kim and Yu. A. 
Nesterov for the fast differentiation algorithm, which 
made a principal impact on the present paper. The 
authors also thank V. V. Borisov, A. A. Vagin and 
A. I. Ryskin for valuable discussions and O. M. 
Liginchenko for her great help in preparing the manu- 
script. 
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Abstract 

Tests of the distribution fitting methods for cen- 
trosymmetric structures show that these methods can 
be used successfully for the search of a correct sol- 
ution in direct methods. To get good resolving power, 

* This research was carded out when the first author was a 
visiting scientist at the University of Amsterdam. 

0108-7673/85/040333-08501.50 

different types of seminvariants (~ 1, triplets, quartets) 
should be used, as is done in other methods. 

1. Introduction 

The power of direct methods for solving the phase 
problem is dependent on the information about the 
structure that is contained in the structure invariants 
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